skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aqeel, Waqar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Low latency is a requirement for a variety of interactive network applications. The Internet, however, is not optimized for latency. We thus explore the design of wide-area networks that move data at nearly the speed of light in vacuum. Our cISP design augments the Internet’s fiber with free-space microwave wireless connectivity over paths very close to great-circle paths. cISP addresses the fundamental challenge of simultaneously providing ultra-low latency while accounting for numerous practical factors ranging from transmission tower availability to packet queuing. We show that instantiations of cISP across the United States and Europe would achieve mean latencies within 5% of that achievable using great-circle paths at the speed of light, over medium and long distances. Further, using experiments conducted on a nearly-speed-of-light algorithmic trading network, together with an analysis of trading data at its end points, we show that microwave networks are reliably faster than fiber networks even in inclement weather. Finally, we estimate that the economic value of such networks would substantially exceed their expense. 
    more » « less
  2. There is a rich body of literature on measuring and optimizing nearly every aspect of the web, including characterizing the structure and content of web pages, devising new techniques to load pages quickly, and evaluating such techniques. Virtually all of this prior work used a single page, namely the landing page (i.e., root document, "/"), of each web site as the representative of all pages on that site. In this paper, we characterize the differences between landing and internal (i.e., non-root) pages of 1000 web sites to demonstrate that the structure and content of internal pages differ substantially from those of landing pages, as well as from one another. We review more than a hundred studies published at top-tier networking conferences between 2015 and 2019, and highlight how, in light of these differences, the insights and claims of nearly two-thirds of the relevant studies would need to be revised for them to apply to internal pages. Going forward, we urge the networking community to include internal pages for measuring and optimizing the web. This recommendation, however, poses a non-trivial challenge: How do we select a set of representative internal web pages from a web site? To address the challenge, we have developed Hispar, a "top list" of 100,000 pages updated weekly comprising both the landing pages and internal pages of around 2000 web sites. We make Hispar and the tools to recreate or customize it publicly available. 
    more » « less
  3. null (Ed.)
  4. Header bidding (HB) is a relatively new online advertising technology that allows a content publisher to conduct a client-side (i.e., from within the end-user’s browser), real-time auction for selling ad slots on a web page. We developed a new browser extension for Chrome and Firefox to observe this in-browser auction process from the user’s perspective. We use real end-user measurements from 393,400 HB auctions to (a) quantify the ad revenue from HB auctions, (b) estimate latency overheads when integrating with ad exchanges and discuss their implications for ad revenue, and (c) break down the time spent in soliciting bids from ad exchanges into various factors and highlight areas for improvement. For the users in our study, we find that HB increases ad revenue for web sites by 28% compared to that in real-time bidding as reported in a prior work. We also find that the latency overheads in HB can be easily reduced or eliminated and outline a few solutions, and pitch the HB platform as an opportunity for privacy-preserving advertising. 
    more » « less